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Preface

Our intention with this book has been to produce a
text covering the mechanics content of all the
single-subject pure mathematics and mecharics
specifications for A-level which will come into
force in September 2000, We have not followed the
syllabus of any one examination board, but have
scugh( to develop the subject in such a way as to
be accessible to al students.

We have tried to combine the best of the current
‘approach, emphasising modelling and the ‘real
world" relevance of the subject, with some of the
vitues of the more traditional texts. We have.
endeavoured to make modelling considerations the
basis of the discussion of most topics.and, where
appropriate, we have developed topics from the
Starting point of a practical problem or experiment
We have, however, not allowed this to compromise:
the need for a degree of mathematical rigour, and
have included suflicient questions leading 1
solutions in algebraic form to satisfy those with a
taste for such problemms.

A special feature of the text i the reference to a
‘number of spreadsheets, used to analyse the data
from suggested experiments or 10 explore the
implications of certain models. These can be
downloaded from the Oxford University Press
‘website (hitp://ww.oup.co.uk mechanics). While
o not claim any great sophistication for 4
itis hoped they will be a useful resource in helping
students gain a ‘fecl”for the subject.

“The order in which topics have been covered is
approximately that in which we choose to proceed
in our own teaching. Naturally, this will not accord
with everyone’s approach, and the text contains a
degree of cross-referencing 1o assist those wishing
to dip in"

‘The opening chapter of the book introduces the
ideas of modelling and the modelling cycle, and
emphasiscs the need to speify the assumptions
‘made when developing @ model and the importance
of testing the predictions of that model against
experimental data. In the next chapter, we develop
the vector tools which underpin much of the
subject. Chapter 3 explores the basic ideas of
kinematics. Thisis followed by two chapters
covering the concept of force and the all important
‘Newton's laws. We then return to kinematics for a
further three chapters, dealing with motion in two
and three dimensions, the use of calculus, the
coneept of relative velacity.

Chapter 9 explores the problem of modelling
friction, starting from a simple experimental
approach. We then examine the con

ot o fore fn Chaptr 10, snd onsidr the
conditions necessary for equilibrium. Moments arc.
then applicd in the next chapter to finding centre
of mass.

Chapters 12 and 13 are devoted to work, energy
and power and to momentum respectively. The
final six chaplers deal with the ‘harder” topics of
frameworks, cirular motion, eastcity and simple
harmonic motion, together with a discussion of
imensional analysis and an introductory treatment
of differential equations.

‘We anticipate that most students will use this book
with the guidance of s teacher, but every effort has
been made to make it readable and accessible to
those using it for sel-study or for revision. The
expostion of topics procceds by small steps and with
a large number of worked examples o reinforce the
ideas. The exercises e designed to give practice in
the rote application of techniques, but also contain



PREFACE

questions of a more esting nature. In addition, there

Thanksar ls due (0 Rob Filing and James

recent examination questions

We are grateful 10 AEB, EDEXCEL, o vasa,

N(ccu. OCR and WIEC for permission to use their
s. The answers provided for

qmuom are the sole responsibility ar e suthors.

We would like (o express our thanks the Nigel
Watts of King's School, Bruton, for the idea of
“modeling a skipper" used in the first chapter.

olson '

d the xammtion questions. Finally, we owe an
‘enormous debt of gratitude to John Day for his
painstaking and detailed work in editing the book,
and for his help and suggestions, which bave
contributed in no small measure to the final
product.

Brian Jefferson
Tony Beadsworth
pril 2000



1 Modelling

1 cannor bring a world quite rownd. alihough I patch i as I can,
WALLACE STEVENS

A group of people on holiday with Explorer Tours proposes to drive directly
across a stretch of desert from their present position A to a camp site at B.
They consult their map of the region (scale 1 cm: 1 km), which clearly marks A
and B, to decide how far they will need to drive.

‘They measure the straight line AB on their map with a ruler and find it to be
18.6em. They conclude that they will need to drive 18.6km.

When they reach B, they check the distance they have travelled and find that it
is 19.2km.

Modelling reality
These people followed a process which is fundamental to the application of
‘mathematics to real problems. They started with the real problem ...

*How far will we drive in going from A to B

set up a mathematical model

“The line AB on the map is a scale drawing of the journey.”

and from this model they obtained a solution to the problem. They then
checked their solution against reality.

Simplifying assumptions

In setting up the model, the group made three simplifying assumptions.

o Using the map distance takes no account of hills and valleys. The model
ssumes that the journey is lat. That i, that any extra distance caused by
hills is insignificant in relation to the length of the journcy. The model
would therefore tend to underestimate the actual distance driven.

D o
A /ﬁ/\ I\
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CHAPTER 1 MODELLING

 The model assumes that the journey is in an exact straight line. In
practice, it is likely that there are rocks and other obstacles w
need to circumvent. So, again, the model is likely to produce an
underestimate.

Disancefrom map

Planview - Actl ko e
 The model assumes that the journey is so short that they can safely ignore
any distortions caused by the fact that the line AB on the map is a flat
projection of a journey taking place on the curved surface of the Earth. All
map projections distort shapes and distances, the nature of the distortion
depending on the particular method of projection used.

Comparison with reality: errors

Having solved their model, the group then did the journey, enabling them to

compare tei soluton with he sctual distane raelle. n making ths

ison, they would need to be aware of sources of error, both in their
prediction and n their measurement of ey,

« Their measurement of AB on the map s at best correct to one decimal
place. This would place their predicted distance. Dp km, in the interval
18.55 < Dp < 18.65. In addition, identifying their starting and finishing
paints on he map couldonly be an approximateafi, perhaps extending
the error bounds (o 18.5 < Dp <

 They found the actual distance using the odometer on their vehicle. This
displayed 24924.6km at the start and 24943.8 km at the end of their
journey. These values are truncated to the nearest one decimal place below,

hich would put the start reading, Skm, and the finish reading, Fkm, in the
tervals 24924.6 < § < 249247 and 249438 < F < 24943.9 respectively.

© The minimum value of (F - ) is therefore 24943.8 — 249247 = 19.1 km
e e e e 12494555 24241615 el o5l

e, D ki, would therefore have error bounds 19.1 < Dy < 19.3. Even

Ui éeamesthat te neable accuracy n the odometer mecha

small enough to be insignificant over a short journey.

m was

Was the model good enough?

Once the errors had been quantified as far as possible, the group would be
able to decide whether their model was a sufficiently accurate representation
of reality for their purpose. If not, they would need to re-examine
assumptions they made and modify the model. They might, for example, be
able to obtain a larger-scale map and measure a route including detours
around likely obstacles.




THE MODELLING PROCESS

The modelling process

Allapplications of mathematies o real-vorld ‘problems fallow the same
process as the one described above, the

g eight steps:

1 Specify the real problem This should be a clear statement of the situation
and should specify the results required in the solui

‘account in the model and which should be ignored.
assumptions about the way in which certain variables are related. For
Cknmple ‘we might decide to assume that air resistance is proportional to
veloc

3 Set wp the mathematea model. I th cxample given, this was sl
drawing, but it would more usually be a set of equations describing the
‘behaviour of the simplified system.

4 Solve the mathematical model The equations should be solved to obtain the
outcome which would result from the simplified system.

5 Decide what really happens This may involve setting up an experiment or
obtaining data from published sources.

6 Quantify the likely errors There may be errors in the values used in the
model and/or in the results obtained from the experiment. Eror bounds
hould e extsbldeTo al i vakes 3 the flits onth oulcome
should be quanti

7 Compare with ,um, ‘The results from the model should be compared with
those obtained in reality 1o decide if the model provides a sufficiently
aceurate representation of the real situation. The errors mentioned in 6 need
10 be taken into account in this comparison.
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8 Modify the model If the model does not give an adequate representation of
the real situation, it is necessary to re-examine the assumptions on which it
was based. A new model should then be set up to allow for the effect of one
or more of the factors which had previously been ignored. The whole
process should then be repeated, perhaps several times, until a sufficiently
accurate model is obtained.

“This process is summarised in the flowchart on page 3.

In this ook, we concentrate on problems involving forces and the motion of

objects, but the process of mathematical modelling is common to all situations

in which mathematics is applied 1o real-world problems

Another example of modelling

‘The problem s to model the motion of a person skipping.

We first need to state the precise questions which we wish to answer, for

cxample:

® What is the relationship between the speed of the rope and the height of the
3

jump?
 ‘Are there limitations on these quantities for a given person and rope?

to list all the factors which we think might have a bearing on
the problem. This list can be as long and the factors as fanciful as you wish. It
is better to include something a bit daft than to fail to take account of an
important factor. Here is a possible list ~ you can probably think of several
‘more items.

Our next task

Length of rope.
Mass of rope

lexibility of rope
‘Thickness of o
‘Whether the rope drags on the ground
Gravity

y
Height of person

Mass of persor

Size of feet, length of arms and other physical proportions
Movement of arms and therefore the locus of rope

Speed of rope

Height of jump. Do we measure this as the movement of the person's
centre of gravity or as the gap between the feet and the ground
(bending of legs)?

Amount of time feet need 10 stay in contact with the ground in the

How “bouncy’ the ground is
Once we have our list, we must decide what assumptions to make.



ANOTHER EXAMPLE OF MODELLING

For a first, simple model we might decide that a rope, which is curved and has.
‘mass all the way along, is too complex. It would be easier mathematically to
replace it with a thin, rigid rod attached to two strings of negligible mass. In
addition, it would be simpler if we supposed that the rope is being made to
rotate at a constant speed in a circle around a fixed point in space, with the
ground being a tangent 10 the circle.

‘The simplest way to model the person would be
as a cuboid of uniformly dense material rising and
falling without any change of shape. This would
spend a fixed proportion of each cycle in contact
with the ground and the rest moving vertically
under gravity.

In this model, any resistance to the motion of the
rope or the person would be ignored.

‘The important variables are the length, r, of the strings; the speed, v, of the
rod around the cirele; the height, , of the jump; the time, 1, from the start
of the motion; and the proportion, p, of time spent in contact with the
ground. On the assumption that the rope is at the bottom of the circle when
the person is at the top of the jump, we could write equations connecting r,
v, b, p and 1. These equations would form the model and by manipulating
them we could find solutions predicting the position of the rope and the
person for any value of 1.

There would be a lower limit on the rate of skipping because the value of v
would have o be great enough to prevent the rope going slack at the top of
the circle

‘There would lso be an upper
limit because time would be
needed for the person to get
sufficiently high off the
ground to allow the passage
of the rope.

i level while th rope

Our task would now be to observe people skipping, frst to decide on a
reasonable value for p and then (o test out the predictions of our model about
the relation between the height of jump and the speed of the rope.

Itis unlikely that the model would be very good, so we would need to
reassess our assumptions. Observing skippers would help us to decide which
assumptions to modify. We would continue to refine our model and test
against observation until we regarded the predictions as sufficiently
accurate.
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Conventional terms

When stating problems in mathematics, we often use terms which imply that
cetan assumpions ar being made. For exampe, you wil e qestons
referring 10 a string as Jight. This would indicate that the mass of the string is

sufficiently small for it to be ignored.

‘The common terms are given in the table below.

Term ‘Applies to What s disregarded
Tncxtensible | Strings, rods Stretching
Light Strings, springs, rods Mass
Particle Object of negligible size | Rotational motion
Rigid Rods Bending
Small Object of negligible size | Rotational motion
Smooth Surfaces, pulleys Friction
Exercise 1

1 Do you think it would be reasonable to disregard air resistance in the following situations?
) A marble dropped from an upstairs window.
b) A table tennis ball dropped from an upstairs window.
©) A marble dmpped from an aircraft at 2000 metres altitude,
@) A shot being put.
) A rocket firework being sct off
0 A child on a swing.
9 A person walking.
1) A person cycling.

2 Do you think it would be reasonable to disregard friction in the following situations?
a) Skiing downhill
b) A child going down a slide.
©) Raising an object on a rope passing over a tree branch.
@) Raising an object on a rope passing over a pulley.
o) A car being driven in a straight line.
) A car being driven round a curve.

3 In the sport of bungee jumping. participants jump from a platform with an elastic rope attached to
ther ankles. The other end of the rope s attched tothe plaform. Padipants ol un e
“The tension built up in ly brings them to
atemporary stop. Often the jump takes place over water and e pariipans have the choiceof
whcl.hcr {0 come 10 stop beloe heyhi th water, whether 0 get thei i wetor whethr to
hosen by them. 10 work out the correct length of

plu
Topeto sty thei ety
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Eexencise 1
In modelling this problem the following list of factors was drawn up. Separate them into three
lists:

A Those which can be totally ignored in forming a mathematical model.

B Those which cannot be ignored but which you think would be too difficult to include in an
initial model.

C Those which should probably be included in an initial model.

In each case, while at this stage you do not have enough knowledge to answer this question
with 100% confidence, try to justify your inclusion of each item in its list.

a) The weight of the person.

b) The height of the person.

©) The height of the platform.

@) The elasticity of the bungee rope.

©) The number of ropes

) The accuracy with which the measurements can be made.
9) The weight of the bungee rope.

1) The weather conditions.

) The depth of the water.

m) The maximum stress the body can take.

) The way the bungee rope deforms when it i stretched.

0) How fst the water is flowing.

P) How fast the person wants to be moving when he/she hits the water.
@) Whether there is a cross win

) How the rope i tied to the ankles.

) Any more you can think of

For each of the following situations, make a list of the factors which you think might have a
bearing on the outcome.

a) The amount of water falling on a person crossing an open space in the rain
b) The motion of a boat crossing a river.

©) A tennis player serving.

@) A toy car free-wheeling from rest down a slope.

@) A child swinging on a rope tied to a tree branch.




2 Vectors

Lord Ronald ... flung himself upon his horse and rode madly off in all directions.
STEPHEN LEACOCK

When modelling physical systems, we use a number of quaniites, such as

force, displacement, velocity, acceleration and momentum, which share i

common property: namely. all of these quantities can be specified completely

only by stating both their magnitude (size) and their direction. Such quantitics
called veetors.

[ A vector quantity is one which has both magnitude and direction.

We also use other quantities, such as distance, speed, work and power,
which are completely specified by their magnitude. Such quantities are
called scalars.

[ A scalar quantity is one which has only magnitude.

Because of this shared vector property, the mathematical techniques used for
combining and manipulating displacements work equally well when we wish to

. We therefore need to spend some
time becoming familiar with the language and mathematics of vectors.

Notation

‘The simplest vector quantity to illust
given distance in a given
segment.

ate is a displacement, or translation, for a
can be represented by a dirccted line

‘The line segment shown in the diagram represents a translation from A to B.
“To show that it s a translation rather than just the distance AB, an arrow is
‘put over the pair of letters to give AB. This convention is the more widely
used. particularly by the examination boards. (The other way to represent a
directed Tine segment i Lo print its pair of letters in a bold face to give, in our

example, Al

An alternative way of labelling vectors is to use a single letter in bold type,
such as a. This would be handwritten as a.



PROPERTIES OF VECTORS
Magnitude

‘The magnitude of the vector AB is shown as AB or [AB].

‘The magnitude of the vector a is shown as [a] o a.

Unit vector

A vector with a magnitude of 1 unit is called a unit vector. The unit vector in
the direction of a vector a is usually labelled & (often referred 1o as ‘a hat’).

Properties of vectors
Equality of vectors

Vectors are equal if they have the same magnitude and direction. P o
For cxample, in the parallclogram shown on the right,
=DCand AB =

Addition of vectors

In the triangle on the right, we can sce that if we combine the N > c
translations AB and BC the effect would be the same as the
single translation AC. », Teq

We say that AC s the vector sum of AB and BC, and write
AB+BC = AC
AC is called the resultant of AB and BC.
(Note the use of a double arrowhead in the diagram to signify that the vector
is  resultant )
You should be clear that this does not mean that the lengths AB + BC = AC.
‘Think of the + symbol as meaning ‘followed by', s0 AB + BC = AC means
translation AB followed by translation BC is cquivalent
to translation AC

The .nmrmmn for using the + symbol will be clear when we consider vectors
in component

Zero vector
If we were to combine the displacements AB and BA, the resultant would be a

vector with zero magnitude (its direction would be undefined). We call this the
zero veetor and write it as 0 (handwritten 0).
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Negative vectors
As AB + BA = 0, itis reasonable to write BA = ~AB.
The translations AB and BA are the exact opposites of each other.

In general, the vector -a has the same magnitude as a but the opposite
direction.

Multiplying by a scalar

If the translation a s applied twice, the effect i a translation twice
as far in the same direction:
ata

a
4
[2a] = 2[a]

In general, ka is a vector parallel to 8 and with magnitude k

[kal = Kla]

‘Commutativity

Translation p followed by translation q has the same resultant as g followed by
p. In the diagram

p+a=AB+BC =AC
a+p=AD+DC=AC
= pra=q+p

That is, vector addition is commutative.

Assoclativity

1f we add several vectors, the order in which we bracket them does not affect
the resultant. In the diagram:

(p+q) +1=AC+CD=AD
+(@+r)=AB+BD =AD
= (@) +r=p+@+r)

That is, vector addition is associative,
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Subtraction

Subtracting the vector B i cquivalent to adding —BC, or CB. In the
diagram, p = AB and g = AD, so:

p-q=AB-AD

Example 1 In the diagram, ABEF and BCDE are squares. Vector
AB = pand vector AE = q. Find a) AC b)AD ¢) AF d) EC

soumon
9 AC=2AB = AC=2p ? °
b) AD = AE + ED = ¢ + ED
But ED =AB
= A ©
= RD=q+p v

Note Any route from A to D gives the required result, For example,
we could have said

AD = AB + BD
As BD = AE = q, this gives
AD=p+q
) AF = AE + BF
Bu EF =BA=

Example 2 The diagram shows a cuboid ABCDEFGH, i A
vith AB, BC and TG corresponding to the vectors p. q

and r, as shown. M is the mid-point of GH. Find, in
terms of p, q and r, the following vectors:

aAC  b)DF o BM 7
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sownon
8) AC=AB+BC=p+q
b) DF=DC+ CB+BF =p-q+r1

o BM = BC + G + OM =q+r—p

Example 3 ABCD is a E is the mid-point of AC. c
Vector AB = p and vector AD = q. Find a) BE  b) BD. .

What can be deduced from the result? 5

soumon N /

a) First notice that

RC-RB+BC=p+q

and
AE={AC=1(p+9
Therefore,
BE = BA + AE
=-p+i(+q
=i@-»

b BB =BC+CB=q-p
‘We can see from this that BE = £ BD. This means that BE is half the
length of BD and BED is a straight line. That s, E is the mid-point of
BD. This proves that the diagonals of a parallelogram bisect each
other. (Many standard geometrical theorems can be proved by vector
‘methods in this way.)

Example 4 An cxpedition in the Sahara travels
10km on a bearing of 080° and then 8km on a
bearing of 045", What is the expedition’s final
position in relation to its starting point?

soumon
The resultant of the two s of the journey i
the vector AC in the diag:

In mnngle ABC, we have AB = 10km,
and ABC =




PROPERTIES OF VECTORS

By the cosine rule:
AC? = AB? + BC? — 2 x AB x BC x cos ABC

02 482 — 2 x 10 x § x cos 145°

95.08

= AC=I17.18km

By the sine rule:

BC
sinBAC

4

= BAC=155

So, ACisa dlsplaumenl of 17.18 km on a bearing of
30° — 015.5° = 064.5°.

Exemple 5 A suimmner, uho cun i 03 $ms in still water, wishes to

cross a river flowing at 0.5m s "

) If she aims straight across the river, what will be her actual velocity?

b) If she wishes to travel straight across, in what dircction should she aim
and what will be her actual speed?

soumon
‘We need to make the simplifying assumption that the water flows at a
uniform speed at all points on the crossing. We can then represent the
velocities by the vector diagrams on the righ.

Swimer
# Theswimmer's actual spesd i 30 ¥ = VOFTFOF =0943ms”! okt .
Her direction 0 is given by

0= 5§

08

tano =28

05

So the swimmer travels at 0.943m ! at an angle of 58" 10 the biv03met
dircction of the river.

) The direction of the swimmer’s aim i given by Swiner .

cosh = 5 p=513

s
08
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Her actual speed is u = VO — 0,51 =

So, she should aim upstream at 51.3° to the bank. She will then travel
straight across the river at 0.625ms™".

.625ms™!

Exercise 2A

1 ABCE i a rectangle. CDEF is a rhombus. G s the mid-point 5
of AB. AF = pand EB = q.
a) Find in terms of p and q:

DAB W) CB ) DB

&) Show that BB + CA = 2DF. 4 T "

2 Thc diagram shows a regular hexagon ABCDEF with AB =
BC = q. Find in terms of p and q: Y

@AB  ®AC oCE @BE oFA R o

3 The diagram shows a trapezium ABCD with AB parallel to DC
and twice as long. E is the mid-point of BC. AD = p and
BC = q. Find in terms of p and q:
o AB BHAC oCD DB «AE  0ED

-

The diagram shows a tetrahedron OABC with OA = a, OB = b
OC=c.Dis mc ‘mid-point of AB and E is on BC so that
1. Find in terms of a, b and e:

mﬁ o AD. @ BC
0 OF @ DE

5 Use vector methods to show that the line joining the mid-points of two.
sides of a triangle is paralle] to the third side and half its length.

6 The dugmm shows triangle ABC with D, E and F the mid-poiats <
of BC, Al B respecively. G is the point on AD such that the
ratio AG : GD = 2: 1. Vector AB = pand BC
a) Find in terms of p and g:
)DE mDA ) BG Iv) GE
Explain what your resuls indicate about the points B, G and E.
b) Prove the equivalent result for points C, G and F.




