Editor HONGZHE SUN

Biological Chemistry of Arsenic, Antimony and Bismuth

www.come So

Biological Chemistry of Arsenic, Antimony and Bismuth

Biological Chemistry of Arsenic, Antimony and Bismuth

Editor

HONGZHE SUN

Department of Chemistry, University of Hong Kong, P. R. China

A John Wiley and Sons, Ltd, Publication

This edition first published 2011 © 2011 John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Biological chemistry of arsenic, antimony and bismuth / editor, Hongzhe Sun.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-71390-7 (cloth)
1. Arsenic–Physiological effect. 2. Antimony–Physiological effect. 3. Bismuth–Physiological effect.
4. Group 15 elements–Physiological effect. I. Sun, Hongzhe.

QP535.A7B56 2011 615.9'25715–dc22

2010032741

A catalogue record for this book is available from the British Library.

ISBN 9780470713907

ePDF: 9780470975497 oBook:9780470975503 ePub: 9780470976227

Set in 10/12pt, Times by Thomson Digital, Noida, India Printed in Singapore by Markono Print Media Pte Ltd

Contents

Li	st of (Contrib	putors	xiii
Pr	eface			xv
1	The Neil and	Chem Burfor Cheryl	istry of Arsenic, Antimony and Bismuth d, Yuen-ying Carpenter, Eamonn Conrad D.L. Saunders	1
	1.1	Prop	erties of the Elements	1
	1.2	Allo	tropes	3
	1.3	Bond	d Energies	4
	1.4	Oxid	lation States	4
	1.5	Rela	tivistic Effects and Orbital Contraction	5
	1.6	Struc	cture and Bonding	6
	1.7	Clus	ters and Extended Structures	9
	1.8	Hybi	ridization and Inversion	11
	1.9	Coor	dination Chemistry	12
	1.10	Geol	ogical Occurrence	14
	1.11	Aque	eous Chemistry and Speciation	14
	1.12	Anal	ytical Methods and Characterization	15
	1.13	Conc	clusions	15
	Refe	erences		15
2	Arse	enic's I	Interactions with Macromolecules and its Relationship	
	to C	arcino	genesis	19
	Kirk	T. Kit	chin	
	2.1	Introd	uction	19
	2.2	Arsen	ic's Interactions with DNA and Proteins	20
		2.2.1	Release of Zinc from Zinc Finger Proteins has been	
			Chemically Demonstrated	26
		2.2.2	Binding of Trivalent Arsenic to Zinc Finger Proteins	26
		2.2.3	Reduced Function of Zinc Finger Proteins	27
		2.2.4	Restoration of Zinc Finger Protein Function	27
	2.3	Cance	er – MOA	30
		2.3.1	Binding to RSH Groups	30
		2.3.2	Cancer – MOA – Oxidative Stress	31
		2.3.3	Cancer – MOA – DNA Methylation	33

vi Contents

	2.4 Arsenic'	's Many Connections to Carcinogenesis	34
	2.4.1 H	Human Carcinogenicity	34
	2.4.2 A	Animal Studies - Promotion of Carcinogenesis	38
	2.4.3 A	Animal Studies - Complete Carcinogenesis	38
	2.4.4 A	Arsenicals in the Treatment of Leukaemia - APL	40
	2.5 Sources	of Information on Arsenic's Mode of Action,	
	Biochen	nical Effects, Carcinogenesis in Animals and Man,	
	Metabol	ism and Analytical Chemistry	40
	2.6 Conclus	ion	46
	Acknowledge	ments	46
	Disclaimer		46
	Abbreviations	3	47
	References		48
3	Biological Cl	nemistry of Antimony and Bismuth	53
	Nan Yang and	d Hongzhe Sun	
	3.1 Introduc	tion	53
	3.2 Biorelev	ant Coordination Chemistry of Antimony and Bismuth	53
	3.3 Antimor	ny and Bismuth Compounds in Medicine	54
	3.3.1 A	Antimony in Medicine	54
	3.3.2 H	Bismuth in Medicine	55
	3.4 Interacti	on with Nucleic Acids	56
	3.4.1 I	nteraction of Antimony with Nucleosides and Nucleotides	56
	3.4.2 1	nteraction of Bismuth with Nucleosides and Nucleotides	58
	3.5 Interacti	on with Amino Acids and Peptides	58
	3.5.1 1	nteraction of Antimony with Amino Acids and Peptides	58
	3.5.2 1	nteraction of Bismuth with Amino Acids and Peptides	61
	3.6 Interacti	on with Proteins and Enzymes	62
	3.6.1 1	nteraction of Antimony with Proteins and Enzymes	62
	3.6.2 1	nteraction of Bismuth with Proteins and Enzymes	68
	3.7 Conclus	ion and Perspectives	77
	Acknowledge	ments	77
	References		77
4	Metallomics	Research Related to Arsenic	83
		mine Interneted Diamatel Science	0.2
	4.1 Metalloi	mics – Integrated Biometal Science	83 05
	4.2 Analyuc	al Spaciation of Trace Elements in Dialogical Semples	65 7
	4.5 Chemica	ar Speciation of Argonic in Solmon Eco Collo	07
	4.3.1 3	Speciation of Arsenic III Samoli Egg Cells	09 02
	4.3.2 3	Speciation of Arsonia Species in Human Dland Server	93
	4.3.3 3	Arganic Matchelism in Hemsters and Pats after an	90
	4.3.4 F	Tracine iniciationism in manisters and Kats after all	00
	(90

		4.3.5 Animal Species Difference in the Uptake of Dimethylated	103
		A 3.6 Speciation and Excretion Patterns of Arsenic Metabolites	105
		in Human Urine after Ingestion of Edible Seaweed Hijiki	105
	1 1		105
	4.4 A alz	nowledgements	109
	ACK Dof	nowledgements	110
	Kelt	erences	110
5	Ars	enic in Traditional Chinese Medicine	113
	Киі	Wang, Stwang Yu and Ttanlan Zhang	
	5.1	Arsenic Bearing Minerals and their Clinical Applications	113
		5.1.1 Introduction	113
		5.1.2 Arsenolite and its Clinical Applications in Traditional Chinese	115
		5.1.3 Realger and Orniment and their Clinical Applications in TCM	115
		5.1.5 Reargan and Orphinent and then Chinear Applications in Terri 5.1.4 Processing of Arsenic Bearing Minerals	117
	52	Metabolism and Pharmacokinetics of Arsenic Bearing Minerals	110
	5.2	5.2.1 Arsenolite and Arsenic Trioxide	119
		5.2.2 Metabolism and Pharmacokinetics of Realgar and Orniment	121
		5.2.3 Nanoparticles of Realgar	122
	5.3	Pharmacological Activities and Mechanisms of Actions of ABMs	122
		5.3.1 Mechanisms of Anticancer Action of Arsenolite and ATO	122
		5.3.2 Mechanisms of Anticancer Actions of Realgar	125
		5.3.3 Arsenolite on Asthma Prevention	127
		5.3.4 Realgar on Brain Protection	128
	5.4	Perspectives	128
	Refe	erences	130
6	Mic	robial Transformations of Arsenic in Aquifers	135
	Jond	athan R. Lloyd	
	6.1	An Introduction to the Microbial Cycling of Arsenic	135
	6.2	The Biochemistry of Microbial Arsenic Transformations	137
		6.2.1 Microbial Resistance to As(V) via the Arsenic Operon	137
		6.2.2 Gaining Energy from Arsenic: the Dissimilatory Reduction	
		of As(V) under Anaerobic Conditions	137
		6.2.3 Closing the Arsenic Cycle: the Oxidation of As(III)	138
	6.3	Microbially Driven Mobilization of Arsenic in Aquifers:	
		a Humanitarian Disaster	139
		6.3.1 Microbial Ecology of Arsenic Impacted Aquifers: Hunting	
	<i>.</i> .	for the Organisms that Mobilize Arsenic	140
	6.4	Conclusions and Future Directions	141
	Ack	nowledgements	142
	Refe	erences	142

7	Bio Rich	methyla ard O.	ation of Arsenic, Antimony and Bismuth Jenkins	145
	7.1	Introd	uction	145
	7.2	Biome	ethylation of Arsenic	147
		7.2.1	Microbial Biomethylation of Arsenic	147
		7.2.2	Mammalian Biomethylation of Arsenic	150
		7.2.3	Arsenic Biomethylation/Demethylation and Organoarsenic	
			Compounds in the Environment	156
	7.3	Biomethylation of Antimony		
		7.3.1	Organoantimony Compounds in the Environment	159
		7.3.2	Antimony Biomethylation in Mammals	161
		7.3.3	Antimony Biomethylation and its Relation to SIDS	161
		7.3.4	Microbial Biomethylation of Antimony	162
		7.3.5	Biological Mechanism of Antimony Biomethylation	168
		7.3.6	Abiotic Reactions of Particular Relevance to Antimony	
			Biomethylation Studies	169
	7.4	Biome	ethylation of Bismuth	169
		7.4.1	Organobismuth Compounds in the Environment	171
		7.4.2	Microbial Biomethylation of Bismuth	171
		7.4.3	Biological Mechanism of Bismuth Biomethylation	173
	Abb	reviatio	ons	174
	Refe	erences		175
8	Met	alloid '	Transport Systems	181
	Hsu	eh-Lian	g Fu, Xuan Jiang and Barry P. Rosen	
	8.1	Introd	uction	181
	8.2	Metal	loid Uptake Systems	183
		8.2.1	Arsenate Uptake Systems	183
		8.2.2	Uptake Systems for Arsenite and Antimonite	184
		8.2.3	Boron Uptake Systems	191
		8.2.4	Uptake Systems for Silicon and Germanium	193
	8.3	Metal	loid Efflux Systems	195
		8.3.1	Eukaryotic MRP Efflux Pumps	195
		8.3.2	ArsB	196
		8.3.3	ArsA	197
		8.3.4	Acr3	200
		8.3.5	Efflux Systems for Silicon	201
	. ·	8.3.6	Ettlux Systems for Boron	202
	8.4	8.4 Summary and Conclusions		
	Ack	nowled	gements	202
	Refe	erences		203

9	Bismu	th Complexes of Porphyrins and their Potential	
	in Me	dical Applications	209
	Berna	rd Boitrel	
	9.1 I	ntroduction	209
	9.2 1	Early Work (1969-1994)	210
	9.3 1	Bismuth Complexes of Unfunctionalized Porphyrins	211
	(9.3.1 The First X-ray Structure of (OEP)Bi(SO ₃ CF ₃)	211
	(9.3.2 Other X-ray Structures with Tetra-Mesoaryl	
		Porphyrin: Bi(tpClpp)NO ₃ and Bi(tpClpp)Br	211
	9.4 1	Bismuth Complexes of Functionalized Porphyrins	212
	(9.4.1 Picket Porphyrins	213
	(9.4.2 Bis-Strapped Porphyrins	223
	Ģ	9.4.3 Single-Strapped Porphyrins	236
	9.5 1	Future Strategies Towards Bifunctional Chelates (BFC) – Conclusions	237
	Refere	ences	239
10	Heli	cobacter pylori and Bismuth	241
	Arun	i H.W. Mendis and Barry J. Marshall	
	10.1	Introduction	241
	10.2	Helicobacter pylori	243
		10.2.1 Disease Associations and Clinical Manifestations	245
	10.3	Bismuth as an Antimicrobial Agent	246
		10.3.1 Bismuth Subsalicylate (BSS)	246
		10.3.2 Colloidal Bismuth Subcitrate (CBS)	249
	10.4	Mechanism of Action of Bismuth Citrate and CBS on H. pylori	
		and Ulcer Healing	250
		10.4.1 Bismuth Toxicity	253
	10.5	In Vitro Susceptibility of H. pylori and other Bacteria to Bismuth	
		Compounds and Antibiotics	253
	10.6	The Effect of pH on Bactericidal Activity of Bismuth Compounds	254
	10.7	Novel Preparations of Bismuth Compounds	255
	10.8	Novel Delivery Systems for Bismuth Compounds	
		and Other Antibiotics	255
	10.9	The Biochemical Targets of Bismuth	256
		10.9.1 Enzymes with Zn(II) and Fe(III) Sites	256
		10.9.2 Heat Shock Proteins	256
		10.9.3 Other Metabolic Enzymes	257
		10.9.4 Fumarase and Translational Factor Ef-Tu	257
		10.9.5 Phospholipases	257
		10.9.6 Pepsin	257
		10.9.7 Alcohol Dehydrogenase	258
		10.9.8 Urease	258
	10.10	Binding of Bismuth Compounds to Plasma Proteins	258
	Refere	ences	259

S

11	Appl with	ication of Arsenic Trioxide Therapy for Patients Leukaemia	263
	Bo Yı	uan, Yuta Yoshino, Toshikazu Kaise and Hiroo Toyoda	
	11.1	Introduction	263
	11.2	Cellular and Molecular Mechanisms of ATO Actions	264
		11.2.1 History of Arsenic as a Drug	264
		11.2.2 Uptake of Arsenic	265
		11.2.3 Efflux of Arsenic	266
		11.2.4 Apoptosis Induction	267
		11.2.5 Differentiation Induction	273
		11.2.6 Degradation of PML-RAR α	274
		11.2.7 Proliferation Inhibition and Angiogenesis Inhibition	275
	11.3	Pharmacokinetics of ATO in APL Patients	276
		11.3.1 Administration Route and Distribution	276
		11.3.2 Metabolism and Pharmacokinetics	277
		11.3.3 Adverse Effects and Biological Monitoring	280
	11.4	Potential Combination Therapies with ATO	281
		11.4.1 Natural Product Derived Substances	281
		11.4.2 Cytokine	282
		11.4.3 Other Reagents	283
	11.5	Potential ATO Application to Other Leukaemias	284
	11.6	Conclusion	285
	Ackn	owledgements	286
	Refe	rences	286
12	Antio	cancer Activity of Molecular Compounds of Arsenic, Antimony	
	and l	Bismuth	293
	Edwa	ard R.T. Tiekink	
	12.1	Introduction	293
	12.1	Arsenic Compounds	295
	12.3	Antimony Compounds	298
	12.4	Bismuth Compounds	303
	12.5	Conclusions	307
	Refe	rences	307
13	Radi	obismuth for Therapy	311
	Mart	in W. Brechbiel and Ekaterina Dadachova	
	13.1	Introduction	311
	13.2	Targeting Vectors	312
	13.3	α -Emitters versus β ⁻ -Emitters	313
	13.4	Radionuclides	313
		$13.4.1 \xrightarrow{212} B1$	314
		13.4.2 ²¹³ B1	315

	13.5	Radiolabeling – Chemistry	315
	13.6	Preclinical Studies	317
		$13.6.1 \xrightarrow{212} B1$	317
		13.6.2 ²¹⁵ Bi	317
	13.7	Targeted α -Therapy versus Targeted β -Therapy	321
	13.8	Clinical Studies	322
		$13.8.1 {}^{213}\text{Bi}$	322
	13.9	Alternate Delivery Methods and Uses	323
	13.10	Prospects and Conclusions	324
	Abbre	viations	326
	Ackno	owledgements	326
	Refer	ences	326
14	Genet	tic Toxicology of Arsenic and Antimony	331
	Toby	G. Rossman and Catherine B. Klein	
	14.1	Introduction	331
	14.2	DNA Damage in Cells Treated with Arsenicals	332
	14.3	Mutagenesis in Cells Treated with Arsenicals	333
	14.4	Other Genotoxic Events in Cells Treated with Arsenicals	335
	14.5	Effects of Arsenicals on DNA Renair	337
	14.6	Indirect Mechanisms of Mutagenicity and Comutagenicity	557
	14.0	by Arcanicals	330
	147	Mutagenesis and Transformation as Secondary Effects of	559
	14.7	Conomia Instability	240
	110	Antimony	240
	14.0 D. (Antimony	544 245
	Refer	ences	345
15	Metal	loproteomics of Arsenic, Antimony and	
	Bismu	ith Based Drugs	353
	Cheuk	z-Nam Tsang, Ruiguang Ge and Hongzhe Sun	
	15.1	Introduction	353
	15.2	Chemical Speciation of Arsenic Based Drugs and their	
		Metallometabolism	355
		15.2.1 Metallometabolism in Biological Matrices	355
		15.2.2 Arsenic Metabolism	355
	15.3	Metalloproteomics and its Applications to As-, Sb- and Bi-Based	
		Metallodrugs	356
		15.3.1 From Proteomics to Metalloproteomics	356
		15.3.2 Metal Specific Selection, Detection and Prediction Methods	
		in Metalloproteomics	357
		1533 Identification of Potential Targets of As Sh and Bi Based	551
		Drugs by Matellongeteomics	261
		Drugs by Metanoproteonnes	304

xii Contents

15.4	15.4 Biological Regulation of Arsenic and Antimony		366
	15.4.1	Arsenic and Antimony Uptake Systems	366
	15.4.2	Arsenic and Antimony Extrusion Systems	369
15.5 Conclusions		370	
Ackn	owledge	ements	371
Refer	rences		371

Index

377

List of Contributors

Bernard Boitrel UMR CNRS 6226, Sciences Chimiques de Rennes, (I.C.M.V.), Université de Rennes 1, Campus de Beaulieu 263, F-5042 RENNES Cedex, France

Martin W. Brechbiel Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, Building 10, Center Drive, Bethesda, MD 20892, USA

Neil Burford Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada

Yuen-ying Carpenter Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada

Eamonn Conrad Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada

Ekaterina Dadachova Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, NY 10461, USA

Hsueh-Liang Fu Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA

Ruiguang Ge The Laboratory of Integrative Biology, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China

Hiroki Haraguchi Association of International Research Initiatives for Environmental Studies, Taito-ku, Tokyo 110-0005, Japan

Richard O. Jenkins Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK

Xuan Jiang Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA

Toshikazu Kaise Laboratory of Environmental Chemodynamics, School of Life Sciences, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Kirk T. Kitchin Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

Catherine B. Klein The Nelson Institute of Environmental Medicine, New York University Langone School of Medicine, Tuxedo, NY 10987, USA

xiv List of Contributors

Jonathan R. Lloyd School of Earth, Atmospheric and Environmental Sciences, and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UK

Barry J. Marshall Discipline of Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Crawley WA 6009, Australia

Aruni H.W. Mendis Manager Scientific & Regulatory Affairs, Tri-Med Australia, Subiaco, Western Australia

Barry P. Rosen Department of Cellular Biology and Pharmacology, Florida International University College of Medicine, Miami, FL 33199, USA, and Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA

Toby G. Rossman The Nelson Institute of Environmental Medicine, New York University Langone School of Medicine, Tuxedo, NY 10987, USA

Cheryl D. L. Saunders Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada

Hongzhe Sun Department of Chemistry, The University of Hong Kong, Hong Kong, P.R. China

Edward R. T. Tiekink Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Hiroo Toyoda Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Cheuk-Nam Tsang Department of Chemistry and Open Laboratory of Chemical Biology, The University of Hong Kong, Hong Kong SAR, P. R. China

Kui Wang Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China

Nan Yang Department of Chemistry, The University of Hong Kong, Hong Kong, P.R. China

Yuta Yoshino Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Siwang Yu Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China

Bo Yuan Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Tianlan Zhang Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China

Preface

Arsenic (As), antimony (Sb) and bismuth (Bi) are in Group 15 in the periodic table together with nitrogen and phosphorus. All of them are directly and indirectly related to human life. Both nitrogen and phosphorus are essential to life whereas arsenic (and antimony) is double-edged. The therapeutic effect of arsenic has been recognized even in ancient China and arsenic minerals have often been used in traditional Chinese medicine (e.g., realgar and orpiment). Partially based on this application, arsenic trioxide (Trisenox) was tested and subsequently approved to be used as an anticancer drug against leukaemia. In fact the first modern pharmaceutical is an organoarsenic compound, arsphenamine (Salvarsan or Ehrlich 606). Ironically, the structure of the drug in solution was not clear until recently. Both antimony and bismuth have been used in clinics for decades. The toxicity of arsenic (and antimony) is also well-known and indeed the contamination of groundwater by arsenic is becoming a major health problem in Asian countries such as India and Bangladesh. In spite of their importance to our lives and the environment, there is no book that reports the latest progress of biological chemistry of arsenic, antimony and bismuth.

This book gives readers a comprehensive update of the progress, particularly in the past decade. The 15 chapters which constitute the book have been written by leading scientists who are experts in their relevant field. Chapter 1 is an overview of the current knowledge of the chemistry of arsenic, antimony and bismuth. Chapters 2 and 3 are devoted to the biological chemistry of arsenic, antimony and bismuth. The latest information on structures of clinically used antimony and bismuth drugs, and arsenic/antimony-protein complexes, is described extensively. The transport and trafficking of the metalloid (As and Sb) is summarized in Chapter 8. Chapters 6 and 7 are devoted to biotransformation and biomethylation of arsenic, antimony and bismuth, one of the most important metabolism processes in biological systems. Chapter 5 is devoted the application of arsenic minerals in traditional Chinese medicine whereas Chapter 11 summarizes the modern applications of arsenic trioxide for leukaemia. Subsequently, Chapter 12 reviews the latest progress of the development of anticancer agents based on arsenic, antimony and bismuth complexes. Chapters 9 and 13 are devoted to medical applications of (radio)bismuth especially for potential anticancer treatment. Since the discovery of the bacterium Helicobacter pylori and its role in gastritis and peptic ulcer disease by Warren and Marshall in the 1980s, bismuth containing drugs has been commonly recommended in clinics together with antibiotics. Chapter 10 summarizes clinical applications of bismuth for Helicobacter pylori infection and the potential mechanism of action. Chapter 14 is devoted to the genetic toxicology of arsenic and antimony. In view of the rapid development of modern bioanalytical techniques such as metallomics and metalloproteomics, Chapters 4 and 15 review the concept and methodology of these techniques and more importantly, the application of the '-omics' towards our understanding of the biological chemistry of arsenic, antimony and bismuth.

Such topics will be of particular interest to researchers, scientists and postgraduate students working in the fields of chemistry, biochemistry, environmental chemistry, toxicology and medicine.

I would like to thank all contributors for the hard work and tremendous effort that they have put into writing this book. During the preparation of the book chapter, Professor Toshikazu Kaise (Tokyo University of Pharmacy and Life Sciences, Japan) passed away suddenly. He was an excellent scholar and he promoted the work of the younger generation of scientists in various countries. Professor Kaise will be remembered by all his colleagues and friends. This book, therefore, is dedicated to him for his outstanding contributions to biological chemistry of arsenic. I would also like to express my sincere appreciation to Dr. Nan Yang, Dr. Hongyan Li, and Cheuk-Nam Tsang and Commissioning Editor Paul Deards, and Rebecca Ralf from John Wiley & Sons, Ltd. Without their kind help and strong support, the publication of this book would be impossible. Hongyan and Frances are acknowledged for their endless support and encouragement. And last but not least, I hope that you, the reader, will enjoy reading this book and develop the interdisciplinary spirit that lives in biological inorganic chemistry.

Hongzhe Sun Hong Kong, China

1

The Chemistry of Arsenic, Antimony and Bismuth

Neil Burford, Yuen-ying Carpenter, Eamonn Conrad and Cheryl D.L. Saunders Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada

Arsenic, antimony and bismuth are the heavier pnictogen (Group 15) elements and consistent with their lighter congeners, nitrogen and phosphorus, they adopt the ground state electron configuration ns^2np^3 . Arsenic and antimony are considered to be metalloids and bismuth is metallic, while nitrogen and phosphorus are non-metals. Arsenic and antimony are renowned for their toxicity or negative bioactivity [1, 2] but bismuth is well known to provide therapeutic responses or demonstrate a positive bioactivity [3]. As a background to the biological and medicinal chemistry of these elements, the fundamental chemical properties of arsenic, antimony and bismuth are presented in this introductory chapter.

1.1 Properties of the Elements

Selected fundamental parameters that define the heavier pnictogen elements are summarized in Table 1.1 [4]. While arsenic and bismuth are monoisotopic, antimony exists as two substantially abundant naturally occurring isotopes. All isotopes of the heavy pnictogens are NMR active nuclei, indicating that the nuclear spin will interact with an applied magnetic field. However, as the nuclear spins of these isotopes are all quadrupolar, NMR spectra generally consist of broad peaks and provide limited information. The atoms As, Sb and Bi all have the same effective nuclear charge ($Z_{eff} = 6.30$, Slater), which estimates the charge

Biological Chemistry of Arsenic, Antimony and Bismuth Edited by Hongzhe Sun © 2011 John Wiley & Sons, Ltd

2 The Chemistry of Arsenic, Antimony and Bismuth

Parameter	As	Sb	Ві
Atomic Number Natural Isotopes (abundance)	33 ⁷⁵ As (100) <i>Stable</i>	51 ¹²¹ Sb (57.4) <i>Stable</i>	83 ²⁰⁹ Bi (100) <i>a-decay</i> [5]
Radioactive Stability	busic	¹²³ Sb (42.6) Stable	$t_{1/2}$: $(1.9 \pm 0.2) \times 10^{19} yr$
Nuclear Spin, I	-3/2	+5/2 (¹²¹ Sb) +7/2 (¹²³ Sb)	-9/2
Ionization Energies (kJ mol ⁻¹)			
$M \rightarrow M^+$	947	833.7	703.2
$M^+ \rightarrow M^{2+}$	1798	1794	1610
$M^{2+} \rightarrow M^{3+}$	2735	2443	2466
$M^{3+} \rightarrow M^{4+}$	4837	4260	4372
$M^{4+} ightarrow M^{5+}$	6043	5400	5400
Electron Affinity	78	101	91.3
$(kJ \text{ mol}^{-1}) M(g) \rightarrow M(g)$			
Electronegativity, χ^{P} (<i>Pauling scale</i>)	2.18	2.05	2.02
Atomic Radius (Å)	1.25	1.82	1.55
Single-bond Covalent Radius (Å)	1.21	1.41	1.52
Van der Waals Radius (Å)	2.00	2.20	2.40
Ionic Radii (Å)			
M^{5+}	0.46	0.62	0.74
M ³⁺	0.58	0.76	0.96

Table 1.1Elemental parameters for arsenic, antimony and bismuth (adapted with permission
from [4]). Copyright Springer Science + Business Media

experienced by a valence electron taking into account shielding by the other electrons. As a consequence, the ionization energies and electron affinities for As, Sb and Bi are very similar. The ionization energy is the energy required to remove a valence electron from an atom or an ion in the gas phase. The ionization energies are predictably greater for ions with higher positive charge and are typically lower for atoms or ions with higher principal quantum number (n). The electron affinity is the energy released when an atom gains an electron to form an anion in the gas phase. The electronegativity (χ^P), defining the relative ability of an atom to attract electrons to itself in a covalent bond, is sufficiently larger for arsenic than for antimony and bismuth. The atomic radii, covalent radii and ionic radii are smallest for arsenic and largest for bismuth atoms consistent with the relative atomic mass and number of electron shells.

Selected biological and toxicity data for As, Sb and Bi are summarized in Table 1.2. While some arsenic compounds are essential to certain animal species [4], most arsenic compounds display toxic biological effects even when present in only small amounts. Some compounds, such as Salvarsan 606 [6], are therapeutic, although there are reported side effects, including death in high dosages. Neither antimony nor bismuth has any known natural biological function. While antimony has toxicity comparable with that of arsenic, bismuth can be tolerated in large quantities. Bismuth compounds have been used for more than two centuries to treat many medical disorders and are now commonly available in the preparations known commercially as Peptobismol and DeNol [3].